RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2001 Volume 4, Number 2, Pages 96–112 (Mi mt14)

This article is cited in 8 papers

A Game Problem on a Closed Convex Set

G. I. Ibragimov

University of World Economy and Diplomacy of the Ministry of Foreign Affairs of the Republic of Uzbekistan

Abstract: The movements of Pursuer $P$ and Evader $E$ in ${\mathbb R}^n$ are described by the equations $P:\,\dot{x}=a(t)u$ and $E:\,\dot{y}=a(t)v$, where $u$ and $v$ are control parameters of $P$ and $E$. A closed convex subset $S$ of ${\mathbb R}^n$ is given. The players $P$ and $E$ must not leave $S$. Integral restrictions are imposed on the controls of the players. For arbitrary initial locations $x_0,y_0\in S$ of the players, the optimal time of pursuit is found and optimal strategies for the players are constructed.

Key words: differential game, optimal time of pursuit, optimal strategy, possibility of evasion.

UDC: 519.83

Received: 21.09.2000


 English version:
Siberian Advances in Mathematics, 2002, 12:3, 16–31

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026