RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2008 Volume 11, Number 1, Pages 192–207 (Mi mt123)

This article is cited in 4 papers

Partially integral operators with bounded kernels

Yu. Kh. Eshkabilov

National University of Uzbekistan named after M. Ulugbek, Faculty of Mathematics and Mechanics

Abstract: Let $\Omega=[a,b]^\nu$ and let $T$ be a partially integral operator defined in $ L_2(\Omega^2)$ as follows:
$$ (Tf)(x,y)=\int_\Omega q(x,s,y)f(s,y)\,d\mu(s). $$
In the article, we study the solvability of the partially integral Fredholm equations $f-\varkappa Tf=g$, where $g\in L_2(\Omega^2)$ is a given function and $\varkappa\in\mathbb C$. The notion of determinant (which is a measurable function on $\Omega$) is introduced for the operator $E-\varkappa T$, with $E$ is the identity operator in $L_2(\Omega^2)$. Some theorems on the spectrum of a bounded operator $T$ are proven.

Key words: partially integral operator, partially integral equation, integral Fredholm equation, Fredholm determinant, Fredholm minor, spectrum, limit spectrum, point spectrum.

UDC: 517.984.53

Received: 18.04.2007


 English version:
Siberian Advances in Mathematics, 2009, 19:3, 151–161

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026