RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2002 Volume 5, Number 1, Pages 102–113 (Mi mt102)

This article is cited in 1 paper

A Problem of Fejes L. Tóth

Yu. G. Nikonorov, N. V. Rasskazova

Rubtsovsk Industrial Intitute, Branch of Altai State Technical University

Abstract: Let $P$ be a convex $n$-gon on the Euclidean plane with edges of lengths $a_1,\dots,a_n$. Denote by $b_i$ the length of the maximal chord of $P$ parallel to $a_i$. For the quantity $\mu(P)=\sum_{i=1}^n{a_i}/{b_i}$, we prove the inequality $3\le\mu(P)\le 4$, which is the Fejes Tóth conjecture. We also give a classification of polygons with $\mu(P)=3$ or $\mu(P)=4$.

Key words: convex body, Euclidean geometry, isoperimetric problem.

UDC: 513

Received: 10.09.2001


 English version:
Siberian Advances in Mathematics, 2002, 12:4, 34–43

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026