RUS  ENG
Full version
JOURNALS // Trudy Moskovskogo Matematicheskogo Obshchestva // Archive

Tr. Mosk. Mat. Obs., 2024 Volume 85, Issue 2, Pages 255–264 (Mi mmo705)

On the constructive solution of some inverse problems for Sturm–Liouville and Dirac operators

T. N. Harutyunyan

Yerevan State University

Abstract: For some class of boundary conditions, generated Sturm–Lioville operator, we prove existence and uniqueness of solution of corresponding Gelfand–Levitan equation. In second part we prove that if $\{\lambda_n \}_{n \in \mathbb{Z}}$ is the set of eigenvalues of selfadjoint Dirac operator on $(0, \pi)$, then the system of vector-functions
\begin{equation*} \bigg\{ \bigg( \begin{matrix} \sin \lambda_n x \\ -\cos \lambda_n x \end{matrix} \bigg) \bigg\}_{n \in \mathbb{Z}} \end{equation*}
is a Riesz bases in Hilbert space $L^2 ([0, \pi], \mathbb{C}^2)$.

Key words and phrases: inverse problem, Gelfand–Levitan equations, uniqueness of solution, Riesz bases.

UDC: 517.9

MSC: 34A55, 34B24, 47E05

Received: 29.09.2024

Language: English

DOI: 10.24412/0134-8663-2024-2-255-264



© Steklov Math. Inst. of RAS, 2026