RUS  ENG
Full version
JOURNALS // Trudy Moskovskogo Matematicheskogo Obshchestva // Archive

Tr. Mosk. Mat. Obs., 2017 Volume 78, Issue 2, Pages 311–330 (Mi mmo602)

This article is cited in 3 papers

On some modules of covariants for a reflection group

C. De Concini, P. Papi

Dipartimento di Matematica, Sapienza Università di Roma, Italy

Abstract: Let $\mathfrak g$ be a simple Lie algebra with Cartan subalgebra $\mathfrak{h}$ and Weyl group $W$. We build up a graded isomorphism $\smash{\bigl(\bigwedge\mathfrak{h}\otimes\mathcal H\otimes \mathfrak{h}\big)\vphantom)^W}\to \bigl(\bigwedge \mathfrak{g}\otimes \mathfrak{g}\big)^\mathfrak{g}$ of $\bigl(\bigwedge \mathfrak{g}\big)^\mathfrak{g}\cong S(\mathfrak{h})^W$-modules, where $\mathcal H$ is the space of $W$-harmonics. In this way we prove an enhanced form of a conjecture of Reeder for the adjoint representation.

Key words and phrases: exterior algebra, covariants, small representation, Dunkl operators.

UDC: 512.813.4, 512.817.72

MSC: 117B20

Received: 01.06.2017
Revised: 01.07.2017

Language: English


 English version:
Transactions of the Moscow Mathematical Society, 2017, 78, 257–273

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026