RUS  ENG
Full version
JOURNALS // Trudy Moskovskogo Matematicheskogo Obshchestva // Archive

Tr. Mosk. Mat. Obs., 2017 Volume 78, Issue 1, Pages 155–194 (Mi mmo596)

This article is cited in 1 paper

Orbit duality in ind-varieties of maximal generalized flags

Ivan Penkova, Lucas Fresseb

a Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
b Université de Lorraine, CNRS, Institut Élie Cartan de Lorraine, UMR 7502, Vandoeuvre-lés-Nancy, F-54506 France

Abstract: We extend Matsuki duality to arbitrary ind-varieties of maximal generalized flags, in other words, to any homogeneous ind-variety $ \mathbf {G}/\mathbf {B}$ for a classical ind-group $ \mathbf {G}$ and a splitting Borel ind-subgroup $ \mathbf {B}\subset \mathbf {G}$. As a first step, we present an explicit combinatorial version of Matsuki duality in the finite-dimensional case, involving an explicit parametrization of $ K$- and $ G^0$-orbits on $ G/B$. After proving Matsuki duality in the infinite-dimensional case, we give necessary and sufficient conditions on a Borel ind-subgroup $ \mathbf {B}\subset \mathbf {G}$ for the existence of open and closed $ \mathbf {K}$- and $ \mathbf {G}^0$-orbits on $ \mathbf {G}/\mathbf {B}$, where $ \left (\mathbf {K},\mathbf {G}^0\right )$ is an aligned pair of a symmetric ind-subgroup $ \mathbf {K}$ and a real form $ \mathbf {G}^0$ of $ \mathbf {G}$.

Key words and phrases: Classical ind-groups, generalized flags, symmetric pairs, rest forms, Matsuki duality.

UDC: 512.816.2, 512.816.4, 512.818

MSC: 14L30, 14M15, 22E65, 22F30

Received: 03.04.2017
Revised: 27.04.2017


 English version:
Transactions of the Moscow Mathematical Society, 2017, 78, 131–160

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026