RUS  ENG
Full version
JOURNALS // Trudy Moskovskogo Matematicheskogo Obshchestva // Archive

Tr. Mosk. Mat. Obs., 2017 Volume 78, Issue 1, Pages 145–154 (Mi mmo595)

This article is cited in 1 paper

An estimate for the average number of common zeros of Laplacian eigenfunctions

Dmitri Akhiezer, Boris Kazarnovskii

Institute for Information Transmission Problems 19 B. Karetny per., 127994, Moscow, Russia

Abstract: On a compact Riemannian manifold $ M$ of dimension $ n$, we consider $ n$ eigenfunctions of the Laplace operator $ \Delta $ with eigenvalue $ \lambda $. If $ M$ is homogeneous under a compact Lie group preserving the metric then we prove that the average number of common zeros of $ n$ eigenfunctions does not exceed $ c(n)\lambda ^{n/2}{\rm vol}\,M$, the expression known from the celebrated Weyl's law. Moreover, if the isotropy representation is irreducible, then the estimate turns into the equality. The constant $ c(n)$ is explicitly given. The method of proof is based on the application of Crofton's formula for the sphere.

Key words and phrases: Homogeneous Riemannian manifold, Laplace operator, Crofton formula.

UDC: 514.765, 517.956.2

MSC: 53C30, 58J05

Received: 14.02.2017
Revised: 26.04.2017


 English version:
Transactions of the Moscow Mathematical Society, 2017, 78, 123–130

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026