RUS  ENG
Full version
JOURNALS // Trudy Moskovskogo Matematicheskogo Obshchestva // Archive

Tr. Mosk. Mat. Obs., 2017 Volume 78, Issue 1, Pages 101–128 (Mi mmo594)

This article is cited in 8 papers

Algebraic group actions on normal varieties

M. Brion

Université Grenoble Alpes, Institut Fourier

Abstract: Let $G$ be a connected algebraic $k$-group acting on a normal $k$-variety, where $k$ is a field. We show that $X$ is covered by open $G$-stable quasi-projective subvarieties; moreover, any such subvariety admits an equivariant embedding into the projectivization of a $G$–linearized vector bundle on an abelian variety, quotient of $G$. This generalizes a classical result of Sumihiro for actions of smooth connected affine algebraic groups.

Key words and phrases: algebraic group actions, linearized vector bundles, theorem of the square, Albanese morphism.

UDC: 512.742.1, 512.747, 512.745, 512.743

MSC: 14K05, 14L15, 14L30, 20G15

Received: 31.03.2017
Revised: 17.04.2017

Language: English


 English version:
Transactions of the Moscow Mathematical Society, 2017, 78, 85–107

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026