Abstract:
A significant part of B. M. Levitan's scientific activity dealt with questions on the distribution of the eigenvalues of differential operators [1]. To study the spectral density, he mainly used Carleman's method, which he perfected. As a rule, he considered scalar differential operators. The purpose of this paper is to study the spectral density of differential operators in a space of vector-functions. The paper consists of two sections. In the first we study the asymptotics of a fourth-order differential operator
$$
y^{(4)}+Q(x)y=\lambda y,
$$
both taking account of the rotational velocity of the eigenvectors of the matrix $ Q(x)$ and without taking the rotational velocity of these vectors into account. In Section 2 we study the asymptotics of the spectrum of a non-semi-bounded Sturm–Liouville operator in a space of vector-functions of any finite dimension.