RUS  ENG
Full version
JOURNALS // Trudy Moskovskogo Matematicheskogo Obshchestva // Archive

Tr. Mosk. Mat. Obs., 2013 Volume 74, Issue 1, Pages 1–16 (Mi mmo538)

This article is cited in 18 papers

On the algebra of Siegel modular forms of genus 2

È. B. Vinberg

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Using the methods of the author [Transform. Groups 15, No. 3, 701–741 (2010; Zbl 1225.05015)], we recover the old result of J. Igusa [Am. J. Math. 86, 392–412 (1964; Zbl 0133.33301)], saying that the algebra of even Siegel modular forms of genus 2 is freely generated by forms of weights 4,6,10,12. We also determine the structure of the algebra of all Siegel modular forms of genus 2 and, in particular, interpret the supplementary generator of odd weight as the Jacobian of the generators of even weights.

Key words and phrases: symmetric domain; automorphic form; reflection group; moduli space; quartic surface; K3 surface; period map; categorical quotient.

UDC: 515.178.1.

MSC: 1F46

Received: 04.01.2013
Revised: 04.02.2013


 English version:
Transactions of the Moscow Mathematical Society, 2013, 74, 1–13

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026