RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2025 Volume 25, Number 1, Pages 33–61 (Mi mmj901)

On geometry of simultaneous approximation to three real numbers

Antoine Marnatab, Nikolay Moshchevitincde

a Univ. Paris Est Créteil, Univ. Gustave Eiffel, CNRS, LAMA UMR8050, F-94010 Créteil, France
b Institut für Diskrete Mathematik und Geometrie, TU Wien, Wien, Austria
c Technische Universität Wien
d Faculty of Computer Science, HSE University, Pokrovsky boulevard 11, Moscow, Russia 109028
e Moscow Center of Fundamental and Applied Mathematics

Abstract: Considering simultaneous approximation to three numbers, we study the geometry of the sequence of the best approximations. We provide a sharper lower bound for the ratio of ordinary and uniform exponent of Diophantine approximation, optimal in terms of this geometry.

Key words and phrases: simultaneous approximation, Diophantine exponents, best approximations.

MSC: 11J13

Language: English

DOI: 10.17323/1609-4514-2025-25-1-33-61



© Steklov Math. Inst. of RAS, 2026