RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2024 Volume 24, Number 3, Pages 441–459 (Mi mmj892)

Endomorphisms and dynamic on the affine Büchi's quadratic $4$ surface

Pablo Sáeza, Xavier Vidauxb, Maxim Vsemirnovc

a Independent researcher. Postal address: Calle nueva 3, Población Versalles, San Pedro de la Paz, Chile
b Universidad de Concepcion, Chile. Postal address: Departamento de Matematica, Facultad de Ciencias Fisicas y Matematicas, Avenida Iturra s/n, Barrio Universitario, Concepcion, Chile
c St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences. Postal address: POMI RAN, Fontanka 27, St.Peterburg, 191023, Russia

Abstract: The quadratic Büchi surface $B_4$ has affine equations $x_4^2-2x_3^2+x_2^2=x_3^2-2x_2^2+x_1^2=2$. We describe two non-trivial endomorphisms and second-order linear recurrence relations that preserve integrality on $B_4$, thus giving a way to build a forest-like structure on the set of integral points on $B_4$.

Key words and phrases: Büchi sequences

MSC: 11B83, 11D09

Language: English

DOI: 10.17323/1609-4514-2024-24-3-441-459



© Steklov Math. Inst. of RAS, 2026