RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2022 Volume 22, Number 4, Pages 595–611 (Mi mmj838)

This article is cited in 2 papers

Separatrices for real analytic vector fields in the plane

Eduardo Cabrera, Rogério Mol

Departamento de Matemática - ICEX, Universidade Federal de Minas Gerais, UFMG

Abstract: Let $X$ be a germ of real analytic vector field at $(\mathbb{R}^{2},0)$ with an algebraically isolated singularity. We say that $X$ is a topological generalized curve if there are no topological saddle-nodes in its reduction of singularities. In this case, we prove that if either the order $\nu_{0}(X)$ or the Milnor number $\mu_{0}(X)$ is even, then $X$ has a formal separatrix, that is, a formal invariant curve at $0 \in \mathbb{R}^{2}$. This result is optimal, in the sense that these hypotheses do not assure the existence of a convergent separatrix.

Key words and phrases: real analytic vector field, formal and analytic separatrix, reduction of singularities, index of vector fields, polar invariants, center-focus vector field.

MSC: 32S65, 37F75, 34Cxx, 14P15

Language: English

DOI: 10.17323/1609-4514-2022-22-4-595-611



© Steklov Math. Inst. of RAS, 2026