RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2022 Volume 22, Number 2, Pages 225–237 (Mi mmj826)

Smooth quotients of principally polarized abelian varieties

Robert Auffarth, Giancarlo Lucchini Arteche

Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile

Abstract: We give an explicit characterization of all principally polarized abelian varieties $(A,\Theta)$ such that there is a finite subgroup $G\subseteq\mathrm{Aut}(A,\Theta)$ such that the quotient variety $A/G$ is smooth. We also give a complete classification of smooth quotients of Jacobians of curves.

Key words and phrases: abelian varieties, principal polarizations, Jacobians of curves, smooth quotients, automorphisms.

MSC: Primary 14L30, 14K10; Secondary 14H37, 14H40

Language: English

DOI: 10.17323/1609-4514-2022-22-2-225-237



© Steklov Math. Inst. of RAS, 2026