RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2022 Volume 22, Number 1, Pages 121–132 (Mi mmj819)

On universal norm elements and a problem of Coleman

Soogil Seo

Department of Mathematics, Yonsei University, 134 Sinchon-Dong, Seodaemun-Gu, Seoul 120-749, South Korea

Abstract: Suppose that $\bigcup_{n \ge 0} k_n$ is the cyclotomic $\mathbb{Z}_p$-extension of a number field $k$. In 1985, R. Coleman asked whether the quotient of the group $ ( \bigcap_{n\ge 0} N_{k_n/k} k_n^\times) \cap U_k$ (the group of units of $k$ lying in $N_{k_n/k} k_n^\times$ for all $n$, where $N_{k_n/k}$ is the norm mapping and $k_n$ is an intermediate field) over the group of universal norm units $\bigcap_{n\ge 0} N_{k_n/k}U_n$, where $U_n$ is the unit group of $k_n$, is finite. We discuss Coleman's problem for both the global units and the $p$-units, using an interpretation of the Kuz'min–Gross conjecture. Coleman claims that the quotient is finite modulo Leopoldt's conjecture and Kuz'min–Gross' conjecture under a mild condition. In this paper we improve Coleman's claim by proving the claim modulo only Kuz'min–Gross' conjecture without Leopoldt's conjecture under the same mild condition.

Key words and phrases: tate module, Universal norm elements, cyclotomic $\mathbb{Z}_p$-extension, the Kuz'min–Gross conjecture.

MSC: 11R23, 11R37, 11R18, 11R34, 11R27, 11S25

Language: English

DOI: 10.17323/1609-4514-2022-22-1-121-132



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026