RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2021 Volume 21, Number 3, Pages 453–466 (Mi mmj801)

Some automorphism groups are linear algebraic

Michel Brion

Institut Fourier, University of Grenoble, 100 rue des Mathematiques, 38610 Gieres, France

Abstract: Consider a normal projective variety $X$, a linear algebraic subgroup $G$ of $\mathrm{Aut}(X)$, and the field $K$ of $G$-invariant rational functions on $X$. We show that the subgroup of $\mathrm{Aut}(X)$ that fixes $K$ pointwise is linear algebraic. If $K$ has transcendence degree $1$ over the base field $k$, then $\mathrm{Aut}(X)$ is an algebraic group.

Key words and phrases: automorphism group, linear algebraic group.

MSC: 14L30, 14M17, 20G15

Language: English

DOI: 10.17323/1609-4514-2021-21-3-453-466



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026