RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2021 Volume 21, Number 2, Pages 401–412 (Mi mmj798)

This article is cited in 5 papers

Categorical vs topological entropy of autoequivalences of surfaces

Dominique Mattei

Institut de Mathématiques de Toulouse; UMR5219, UPS, F-31062 Toulouse Cedex 9, France

Abstract: In this paper, we give an example of an autoequivalence with positive categorical entropy (in the sense of Dimitrov, Haiden, Katzarkov and Kontsevich) for any surface containing a $(-2)$-curve. Then we show that this equivalence gives another counter-example to a conjecture proposed by Kikuta and Takahashi. In a second part, we study the action on cohomology induced by spherical twists composed with standard autoequivalences on a surface $S$ and show that their spectral radii correspond to the topological entropy of the corresponding automorphisms of $S$.

Key words and phrases: categorical entropy, derived categories, projective surfaces.

MSC: 14F08

Language: English

DOI: 10.17323/1609-4514-2021-21-2-401-412



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026