RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2021 Volume 21, Number 1, Pages 191–226 (Mi mmj791)

This article is cited in 2 papers

Schubert polynomials, theta and eta polynomials, and Weyl group invariants

Harry Tamvakis

University of Maryland, Department of Mathematics, William E. Kirwan Hall, 4176 Campus Drive, College Park, MD 20742, USA

Abstract: We examine the relationship between the (double) Schubert polynomials of Billey–Haiman and Ikeda–Mihalcea–Naruse and the (double) theta and eta polynomials of Buch–Kresch–Tamvakis and Wilson from the perspective of Weyl group invariants. We obtain generators for the kernel of the natural map from the corresponding ring of Schubert polynomials to the (equivariant) cohomology ring of symplectic and orthogonal flag manifolds.

Key words and phrases: schubert polynomials, theta and eta polynomials, Weyl group invariants, flag manifolds, equivariant cohomology.

MSC: Primary 14M15; Secondary 05E05, 13A50, 14N15

Language: English

DOI: 10.17323/1609-4514-2021-21-1-191-226



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026