RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2021 Volume 21, Number 1, Pages 129–173 (Mi mmj789)

This article is cited in 1 paper

Bounds for multivariate residues and for the polynomials in the elimination theorem

Martín Sombraab, Alain Ygerc

a Institució Catalana de Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys 23, 08010 Barcelona, Spain
b Departament de Matemàiques i Informàtica, Universitat de Barcelona. Gran Via 585, 08007 Barcelona, Spain
c Institut de Mathématiques, Université de Bordeaux. 351 cours de la Libération, 33405 Talence, France

Abstract: We present several upper bounds for the height of global residues of rational forms on an affine variety defined over $\mathbb{Q}$. As an application, we deduce upper bounds for the height of the coefficients in the Bergman–Weil trace formula.
We also present upper bounds for the degree and the height of the polynomials in the elimination theorem on an affine variety defined over $\mathbb{Q}$. This is an arithmetic analogue of Jelonek's effective elimination theorem, and it plays a crucial role in the proof of our bounds for the height of global residues.

Key words and phrases: residues, membership problems, height.

MSC: Primary 32A27; Secondary 11G50, 14Q20

Language: English

DOI: 10.17323/1609-4514-2021-21-1-129-173



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026