RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2021 Volume 21, Number 1, Pages 99–127 (Mi mmj788)

Borel–de Siebenthal theory for affine reflection systems

Deniz Kusa, R. Venkateshb

a University of Bochum, Faculty of Mathematics, Universitätsstr. 150, 44801 Bochum, Germany
b Department of Mathematics, Indian Institute of Science, Bangalore 560012

Abstract: We develop a Borel–de Siebenthal theory for affine reflection systems by describing their maximal closed subroot systems. Affine reflection systems (introduced by Loos and Neher) provide a unifying framework for root systems of finite-dimensional semi-simple Lie algebras, affine and toroidal Lie algebras, and extended affine Lie algebras. In the special case of nullity $k$ toroidal Lie algebras, we obtain a one-to-one correspondence between maximal closed subroot systems with full gradient and triples $(q,(b_i),H)$, where $q$ is a prime number, $(b_i)$ is a $n$-tuple of integers in the interval $[0,q-1]$ and $H$ is a $(k\times k)$ Hermite normal form matrix with determinant $q$. This generalizes the $k=1$ result of Dyer and Lehrer in the setting of affine Lie algebras.

Key words and phrases: extended affine Lie algebras, affine reflection systems, regular subalgebras.

MSC: 17B67, 17B22

Language: English

DOI: 10.17323/1609-4514-2021-21-1-99-27



© Steklov Math. Inst. of RAS, 2026