RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2020 Volume 20, Number 1, Pages 127–151 (Mi mmj760)

This article is cited in 4 papers

Modular vector fields attached to Dwork family: $\mathfrak{sl}_2(\mathbb{C})$ Lie algebra

Younes Nikdelan

Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Matemática e Estatística (IME), Departamento de Análise Matemática: Rua São Francisco Xavier, 524, Rio de Janeiro, Brazil / CEP: 20550-900

Abstract: This paper aims to show that a certain moduli space $\mathsf{T}$, which arises from the so-called Dwork family of Calabi–Yau $n$-folds, carries a special complex Lie $\{$algebra$\}$ containing a copy of $\mathfrak{sl}_2(\mathbb{C})$. In order to achieve this goal, we introduce an algebraic group $\mathsf{G}$ acting from the right on $\mathsf{T}$ and describe its Lie algebra $\mathsf{Lie(G)}$. We observe that $\mathsf{Lie(G)}$ is isomorphic to a Lie subalgebra of the space of the vector fields on $\mathsf{T}$. In this way, it turns out that $\mathsf{Lie(G)}$ and the modular vector field $\mathsf{R}$ generate another Lie algebra $\mathfrak{G}$, called AMSY-Lie algebra, satisfying $\dim (\mathfrak{G})=\dim (\mathsf{T})$. We find a copy of $\mathfrak{sl}_2(\mathbb{C})$ containing $\mathsf{R}$ as a Lie subalgebra of $\mathfrak{G}$. The proofs are based on an algebraic method calling “Gauss–Manin connection in disguise”. Some explicit examples for $n=1,2,3,4$ are stated as well.

Key words and phrases: Complex vector fields, Gauss–Manin connection, Dwork family, Hodge filtration, modular form.

MSC: 32M25, 37F99, 14J15, 14J32

Language: English

DOI: 10.17323/1609-4514-2020-20-1-127-151



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026