RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2019 Volume 19, Number 2, Pages 275–305 (Mi mmj735)

This article is cited in 2 papers

Palais leaf-space manifolds and surfaces carrying holomorphic flows

Ana Cristina Ferreiraa, Julio C. Rebelob, Helena Reisc

a Centro de Matemática da Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
b Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, 118 Route de Narbonne, F-31062 Toulouse, France
c Centro de Matemática da Universidade do Porto, Faculdade de Economia da Universidade do Porto, Portugal

Abstract: Given a pair of commuting holomorphic vector fields defined on a neighborhood of $(0,0) \in \mathbb{C}^2$, we discuss the problem of globalizing them as an action of $\mathbb{C}^2$ on a suitable complex surfaces along with some related questions. A review of Palais' theory about globalization of local transformation groups is also included in our discussion.

Key words and phrases: holomorphic local transformation groups, foliations and leaf spaces, holomorphic complete vector fields.

MSC: Primary 32S65; Secondary 37F75, 57S20

DOI: 10.17323/1609-4514-2019-19-2-275-305



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026