RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2008 Volume 8, Number 1, Pages 119–158 (Mi mmj7)

This article is cited in 122 papers

$q$-Schur algebras and complex reflection groups

R. Rouquier

Mathematical Institute, University of Oxford

Abstract: We show that the category $\mathbb O$ for a rational Cherednik algebra of type $A$ is equivalent to modules over a $q$-Schur algebra (parameter $\notin\frac12+\mathbb Z$), providing thus character formulas for simple modules. We give some generalization to $B_n(d)$. We prove an “abstract” translation principle. These results follow from the unicity of certain highest weight categories covering Hecke algebras. We also provide a semi-simplicity criterion for Hecke algebras of complex reflection groups and show the isomorphism type of Hecke algebras is invariant under field automorphisms acting on parameters.

Key words and phrases: Hecke algebra, reflection group, Schur algebra, Cherednik algebra, highest weight category.

MSC: 20C08, 20C30, 20F55

Received: February 5, 2007

Language: English

DOI: 10.17323/1609-4514-2008-8-1-119-158



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026