RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2018 Volume 18, Number 4, Pages 755–785 (Mi mmj695)

This article is cited in 5 papers

A polyhedral characterization of quasi-ordinary singularities

Hussein Mourtadaa, Bernd  Schoberb

a Institut Mathématique de Jussieu-Paris Rive Gauche, Université Paris 7, Bâtiment Sophie Germain, case 7012, 75205 Paris Cedex 13, France
b Johannes Gutenberg-Universität Mainz, Fachbereich 08, Staudingerweg 9, 55099 Mainz, Germany

Abstract: Given an irreducible hypersurface singularity of dimension $d$ (defined by a polynomial $f\in K[[ \mathbf{x} ]][z]$) and the projection to the affine space defined by $K[[ \mathbf{x} ]]$, we construct an invariant which detects whether the singularity is quasi-ordinary with respect to the projection. The construction uses a weighted version of Hironaka's characteristic polyhedron and successive embeddings of the singularity in affine spaces of higher dimensions. When $ f $ is quasi-ordinary, our invariant determines the semigroup of the singularity and hence it encodes the embedded topology of the singularity $ \{ f = 0 \} $ in a neighbourhood of the origin when $ K = \mathbb{C}$ and $ f $ is complex analytic; moreover, we explain the relation between the construction and the approximate roots.

Key words and phrases: quasi-ordinary singularities, characteristic polyhedron, overweight deformations.

MSC: 14B05, 32S05, 13F25, 14E15

Language: English

DOI: 10.17323/1609-4514-2018-18-4-755-785



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026