RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2018 Volume 18, Number 1, Pages 1–13 (Mi mmj660)

This article is cited in 5 papers

On denseness of $C_0^\infty(\Omega)$ and compactness in $L_{p(x)}(\Omega)$ for $0<p(x)<1$

R. A. Bandalievab, S. G. Hasanovac

a Institute of Mathematics and Mechanics of ANAS, AZ 1141 Baku, Azerbaijan
b S.M. Nikolskii Institute of Mathematics at RUDN University, 117198 Moscow, Russia
c Gandja State University, Gandja, Azerbaijan

Abstract: The main goal of this paper is to prove the denseness of $C_0^\infty(\Omega)$ in $L_{p(x)}(\Omega)$ for $0<p(x)<1$. We construct a family of potential type identity approximations and prove a modular inequality in $L_{p(x)}(\Omega)$ for $0<p(x)<1$. As an application we prove an analogue of the Kolmogorov–Riesz type compactness theorem in $L_{p(x)}(\Omega)$ for $0<p(x)<1$.

Key words and phrases: $L_{p(x)}$ spaces, denseness, potential type identity approximations, modular inequality, compactness.

MSC: Primary 46E30, 46E35; Secondary 26D15

Language: English

DOI: 10.17323/1609-4514-2018-18-1-1-13



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026