RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2017 Volume 17, Number 3, Pages 371–383 (Mi mmj642)

This article is cited in 3 papers

On a generalization of the Neukirch–Uchida theorem

Alexander B. Ivanov

Technische Universität München, Zentrum Mathematik-M11, Boltzmannstr. 3, 85748 Garching bei München

Abstract: In this article we generalize a part of Neukirch–Uchida theorem for number fields from the birational case to the case of curves $\operatorname{Spec}\mathcal O_{K,S}$, where $S$ a stable set of primes of a number field $K$. Such sets have positive but arbitrarily small Dirichlet density, which must be uniformly bounded from below by some $\epsilon>0$ in the tower $K_S/K$.

Key words and phrases: number fields, anabelian geometry, Neukirch–Uchida theorem, densities of primes, stable sets of primes.

MSC: 11R34, 11R37, 14G32

Received: March 16, 2015; in revised form May 24, 2017

Language: English

DOI: 10.17323/1609-4514-2017-17-3-371-383



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026