RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2015 Volume 15, Number 2, Pages 353–372 (Mi mmj563)

Chiral de Rham complex over locally complete intersections

Fyodor Malikova, Vadim Schechtmanb

a Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA
b Institut de Mathématiques de Toulouse, Université Paul Sabatier, 31062 Toulouse, France

Abstract: Given a locally complete intersection $X\hookrightarrow Y$ we define a version of a derived chiral De Rham complex, thereby “chiralizing” a result by Illusie and Bhatt. A similar construction attaches to a graded ring a dg vertex algebra, which we prove to be Morita equivalent to a dg algebra of differential operators. For example, the dg vertex algebra associated to a fat point, which also arises in the Landau–Ginzburg model, is shown to be derived rational.

Key words and phrases: vertex algebra, chiral differential operator, dga resolution.

MSC: 14, 18

Received: May 30, 2014

Language: English

DOI: 10.17323/1609-4514-2015-15-2-353-372



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026