RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2014 Volume 14, Number 1, Pages 1–27 (Mi mmj512)

This article is cited in 3 papers

Orthogonal polynomials on the unit circle, $q$-Gamma weights, and discrete Painlevé equations

Philippe Biane

CNRS, IGM, Université Paris-Est, Champs-sur-Marne, France

Abstract: We consider orthogonal polynomials on the unit circle with respect to a weight which is a quotient of $q$-gamma functions. We show that the Verblunsky coefficients of these polynomials satisfy discrete Painlevé equations, in a Lax form, which correspond to an $A_3^{(1)}$ surface in Sakai's classification.

Key words and phrases: orthogonal polynomials Painlevé equations scattering theory.

MSC: 33E17, 34L25, 39A45, 42C05

Received: July 6, 2010; in revised form June 18, 2013

Language: English

DOI: 10.17323/1609-4514-2014-14-1-1-27



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026