Abstract:
We consider orthogonal polynomials on the unit circle with respect to a weight which is a quotient of $q$-gamma functions. We show that the Verblunsky coefficients of these polynomials satisfy discrete Painlevé equations, in a Lax form, which correspond to an $A_3^{(1)}$ surface in Sakai's classification.
Key words and phrases:orthogonal polynomials Painlevé equations scattering theory.