RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2013 Volume 13, Number 4, Pages 601–619 (Mi mmj506)

This article is cited in 5 papers

On the cohomological dimension of some pro-$p$-extensions above the cyclotomic $\mathbb Z_p$-extension of a number field

Julien Blondeau, Philippe Lebacque, Christian Maire

Laboratoire de Mathématiques, UFR Sciences et Techniques, 16 route de Gray, 25030 Besançon

Abstract: Let $\widetilde K_S^T$ be the maximal pro-$p$-extension of the cyclotomic $\mathbb Z_p$-extension $K^\mathrm{cyc}$ of a number field $K$, unramified outside the places above $S$ and totally split at the places above $T$. Let $\widetilde G_S^T=\mathrm{Gal}(\widetilde K_S^T/K)$.
In this work we adapt the methods developed by Schmidt in order to show that the group $\widetilde G_S^T=\mathrm{Gal}(\widetilde K_S^T/K)$ is of cohomological dimension 2 provided the finite set $S$ is well chosen. This group $\widetilde G_S^T$ is in fact mild in the sense of Labute. We compute its Euler characteristic, by studying the Galois cohomology groups $H^i(\widetilde G_S^T,\mathbb F_p)$, $i=1,2$. Finally, we provide new situations where the group $\widetilde G_S^T$ is a free pro-$p$-group.

Key words and phrases: mild pro-$p$-groups, Galois cohomology, restricted ramification, cyclotomic $\mathbb Z_p$ extension.

MSC: 11R34, 11R37

Received: October 3, 2013

Language: English

DOI: 10.17323/1609-4514-2013-13-4-601-619



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026