RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2010 Volume 10, Number 1, Pages 65–137 (Mi mmj375)

This article is cited in 26 papers

Spherical varieties and Langlands duality

Dennis Gaitsgorya, David Nadlerb

a Department of Mathematics, Harvard University, Cambridge, MA
b Department of Mathematics, Northwestern University, Evanston, IL

Abstract: Let $G$ be a connected reductive complex algebraic group. This paper is devoted to the space $Z$ of meromorphic quasimaps from a curve into an affine spherical $G$-variety $X$. The space $Z$ may be thought of as a finite-dimensional algebraic model for the loop space of $X$. The theory we develop associates to $X$ a connected reductive complex algebraic subgroup $\check H$ of the dual group $\check G$. The construction of $\check H$ is via Tannakian formalism: we identify a certain tensor category $\mathbf Q(Z)$ of perverse sheaves on $Z$ with the category of finite-dimensional representations of $\check H$. The group $\check H$ encodes many aspects of the geometry of $X$.

Key words and phrases: loop spaces, Langlands duality, quasimaps.

MSC: Primary 22E67; Secondary 14H60, 55P35

Received: April 27, 2008

Language: English

DOI: 10.17323/1609-4514-2010-10-1-65-137



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026