Abstract:
In a previous paper, Losev, the author, and Shneiberg constructed a full descendant potential associated to an arbitrary cyclic Hodge dGBV algebra. This contruction extended the construction of Barannikov and Kontsevich of solution of the WDVV equation, based on the earlier paper of Bershadsky, Cecotti, Ooguri, and Vafa.
In the present paper, we give an interpretation of this full descendant potential in terms of Givental group action on cohomological field theories. In particular, the fact that it satisfies all tautological equations becomes a trivial observation.
Key words and phrases:cohomological field theory, mirror symmetry, Batalin–Vilkovisky algebras, tautological relations, Givental's quantization of Frobenius manifolds.