RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2009 Volume 9, Number 2, Pages 359–369 (Mi mmj348)

Lifting central invariants of quantized Hamiltonian actions

Ivan Losev

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract: Let $G$ be a connected reductive group over an algebraically closed field $\mathbb K$ of characteristic 0, $X$ an affine symplectic variety equipped with a Hamiltonian action of $G$. Further, let $*$ be a $G$-invariant Fedosov star-product on $X$ such that the Hamiltonian action is quantized. We establish an isomorphism between the center of the quantum algebra $\mathbb K[X][[\hbar]]^G$ and the algebra of formal power series with coefficients in the Poisson center of $\mathbb K[X]^G$.

Key words and phrases: reductive groups, Hamiltonian actions, central invariants, quantization.

MSC: 53D20, 53D55, 14R20

Received: March 24, 2008

Language: English

DOI: 10.17323/1609-4514-2009-9-2-359-369



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026