RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2009 Volume 9, Number 1, Pages 33–45 (Mi mmj335)

This article is cited in 15 papers

Sur la fonctorialité, pour $\mathrm{GL}(4)$, donnée par le carré extérieur

Guy Henniartab

a CNRS, Orsay cedex, FRANCE
b Université Paris-Sud, Laboratoire de mathématiques d'Orsay, Orsay cedex, FRANCE

Abstract: Let $k$ be a number field. Henry H. Kim has established the exterior square transfer for $\mathrm{GL}(4)$, which attaches to any cuspidal automorphic representation $\Pi$ of $\mathrm{GL}(4,\mathbb A_k)$ an automorphic representation $\Pi$ of $\mathrm{GL}(6,\mathbb A_k)$. At a finite place $v$ of $k$, the local component $\rho_v$ of $\rho$ gives, via the Langlands correspondence, a degree 4 representation $\sigma_v$ of the Weil–Deligne group of $k_v$. Then $\Pi$ is the unique isobaric automorphic representation of $\mathrm{GL}(6,\mathbb A_k)$ such that, whenever $\rho_v$ is unramified, $\Pi_v$ corresponds, via the Langlands correspondence, to the exterior square $\Lambda^2\sigma_v$ of $\sigma_v$. Kim proves that $\Pi_v$ corresponds to $\Lambda^2\sigma_v$ even when $\rho_v$ is ramified, except possibly if $v$ is above 2 or 3 and $\rho_v$ is cuspidal. We complete Kim's work in showing that $\Pi_v$ corresponds to $\Lambda^2\sigma_v$ at all finite places $v$ of $k$.

Key words and phrases: automorphic representation, functoriality, Langlands correspondence.

MSC: 22E47, 22E50, 22E55

Received: March 13, 2008

Language: French

DOI: 10.17323/1609-4514-2009-9-1-33-45



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026