RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2008 Volume 8, Number 3, Pages 547–614 (Mi mmj322)

This article is cited in 18 papers

Analytical Moduli for Unfoldings of Saddle-Node Vector Fields

Ch. Rousseaua, L. Teyssierb

a Université de Montréal, Département de Mathématiques et de Statistique
b Laboratoire Institut de Recherche Mathématique Avancée

Abstract: In this paper we consider germs of $k$-parameter generic families of analytic 2-dimensional vector fields unfolding a saddle-node of codimension $k$ and we give a complete modulus of analytic classification under orbital equivalence and a complete modulus of analytic classification under conjugacy. The modulus is an unfolding of the corresponding modulus for the germ of a vector field with a saddle-node. The point of view is to compare the family with a “model family” via an equivalence (conjugacy) over canonical sectors. This is done by studying the asymptotic homology of the leaves and its consequences for solutions of the cohomological equation.

Key words and phrases: holomorphic foliation, analytical classification, unfolding of singularities.

Received: March 27, 2007

Language: English

DOI: 10.17323/1609-4514-2008-8-3-547-614



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026