RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2008 Volume 8, Number 3, Pages 493–519 (Mi mmj320)

This article is cited in 4 papers

Combinatorial Invariants of Algebraic Hamiltonian Actions

I. V. Losev

Belarusian State University, Faculty of Applied Mathematics and Computer Science

Abstract: To any Hamiltonian action of a reductive algebraic group $G$ on a smooth irreducible symplectic variety $X$ we associate certain combinatorial invariants: Cartan space, Weyl group, weight and root lattices. For cotangent bundles these invariants essentially coincide with those arising in the theory of equivariant embeddings. Using our approach we establish some properties of the latter invariants.

Key words and phrases: reductive groups, Hamiltonian actions, cotangent bundles, Weyl groups, root lattices.

Received: January 29, 2007

Language: English

DOI: 10.17323/1609-4514-2008-8-3-493-519



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026