RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2005 Volume 5, Number 1, Pages 125–133 (Mi mmj187)

This article is cited in 18 papers

A geometric proof of the existence of Whitney stratifications

V. Y. Kaloshin

California Institute of Technology

Abstract: In this paper we give a simple geometric proof of existence of so-called Whitney stratification for (semi)analytic and (semi)algebraic sets. Roughly, stratification is a partition of a singular set into manifolds so that these manifolds fit together “regularly”. The proof presented here does not use analytic formulas only qualitative considerations. It is based on a remark that if there are two manifolds of the partition $V$ and $W$ of different dimension and $V\subset\overline W$, then irregularity of the partition at a point $x$ in $V$ corresponds to the existence of nonunique limits of tangent planes $T_yW$ as $y$ approaches $x$.

Key words and phrases: Stratifications, (semi)algebraic sets, (semi)analytic sets, Wing lemma.

MSC: 14F45, 32C42, 57N80, 58A35, 58C27

Received: June 10, 2003

Language: English

DOI: 10.17323/1609-4514-2005-5-1-125-133



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026