RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2004 Volume 4, Number 3, Pages 729–779 (Mi mmj171)

This article is cited in 15 papers

Vertex algebras and the Landau–Ginzburg/Calabi–Yau correspondence

V. G. Gorbunova, F. G. Malikovb

a University of Kentucky
b University of Southern California

Abstract: We construct a spectral sequence that converges to the cohomology of the chiral de Rham complex over a Calabi–Yau hypersurface and whose first term is a vertex algebra closely related to the Landau–Ginzburg orbifold. As an application, we prove an explicit orbifold formula for the elliptic genus of Calabi–Yau hypersurfaces.

Key words and phrases: Vertex algebra, chiral rings, polyvector fields, spectral sequence, orbifold.

MSC: 14M25, 14F05, 17B65, 17B69, 17B81, 81T20, 55N34

Received: August 29, 2003

Language: English

DOI: 10.17323/1609-4514-2004-4-3-729-779



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026