RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2003 Volume 3, Number 3, Pages 1085–1095 (Mi mmj122)

This article is cited in 17 papers

Degeneration of the Leray spectral sequence for certain geometric quotients

C. A. M. Petersa, J. H. M. Steenbrinkb

a University of Grenoble 1 — Joseph Fourier
b Radboud University Nijmegen

Abstract: We prove that the Leray spectral sequence in rational cohomology for the quotient map $U_{n,d}\to U_{n,d}/G$ where $U_{n,d}$ is the affine variety of equations for smooth hypersurfaces of degree $d$ in $\mathbb P^n(\mathbb C)$ and $G$ is the general linear group, degenerates at $E_2$.

Key words and phrases: Geometric quotient, hypersurfaces, Leray spectral sequence.

MSC: 14D20, 14L35, 14J70

Received: December 10, 2002

Language: English

DOI: 10.17323/1609-4514-2003-3-3-1085-1095



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026