RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2003 Volume 3, Number 2, Pages 681–690 (Mi mmj105)

This article is cited in 10 papers

On skew loops, skew branes and quadratic hypersurfaces

S. L. Tabachnikov

Department of Mathematics, Pennsylvania State University

Abstract: A skew brane is an immersed codimension 2 submanifold in affine space, free from pairs of parallel tangent spaces. Using Morse theory, we prove that a skew brane cannot lie on a quadratic hypersurface. We also prove that there are no skew loops on embedded ruled developable discs in 3-space.

Key words and phrases: Skew loops and skew branes, quadratic hypersurfaces, double normals, Morse theory, developable surfaces.

MSC: 53A05, 53C50, 58E05

Language: English

DOI: 10.17323/1609-4514-2003-3-2-681-690



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026