RUS  ENG
Full version
JOURNALS // Matematicheskoe modelirovanie // Archive

Mat. Model., 2013 Volume 25, Number 4, Pages 102–125 (Mi mm3356)

This article is cited in 19 papers

Modeling of subjective judgments of a researcher about the research object model

Y. P. Pyt'ev

Lomonosov Moscow State University, Faculty of Physics

Abstract: We discuss the methods of mathematical modeling of incomplete and uncertain knowledge of the model $M(x)$ of research object, expressed in a form of subjective judgments of the researcher about possible values of unknown parameter $x\in X$ which determines the model. The mathematical model of “subjective judgements” is defined as space $(X,{\mathcal P}(X),\mathrm{P}\mathrm{l}^{\widetilde{x}},\mathrm{Be}\mathrm{l}^{\widetilde{x}})$ where indeterminate element $\widetilde{x}$ characterizes (as undefined propositional variable) researcher's subjective judgments about the validity of each value $x\in X$ by values of measures of Plausibility $\mathrm{P}\mathrm{l}^{\widetilde{x}}$ of the equality $\widetilde{x}=x$ and of Belief $\mathrm{Be}\mathrm{l}^{\widetilde{x}}$ of the inequality $\widetilde{x}\not=x$. If the researcher has some observational data of the object, he/she can use it to build an empirical estimate of the indeterminate element $\widetilde{x}$ and empirical model $(X,{\mathcal P}(X),\mathrm{P}\mathrm{l}^{\widetilde{x}},\mathrm{Be}\mathrm{l}^{\widetilde{x}})$ of subjective judgements about possible values of $x\in X$.

Keywords: integral, measure, measure of plausibility, measure of belief, indeterminate random element, random indeterminate element, intellectual dialogue.

UDC: 519.21

Received: 15.11.2012


 English version:
Mathematical Models and Computer Simulations, 2013, 5:6, 538–557

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026