RUS  ENG
Full version
JOURNALS // Modelirovanie i Analiz Informatsionnykh Sistem // Archive

Model. Anal. Inform. Sist., 2024 Volume 31, Number 3, Pages 316–337 (Mi mais830)

Discrete mathematics in relation to computer science

Estimation of interpolation projectors using Legendre polynomials

M. V. Nevskii

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia

Abstract: We give some estimates for the minimum projector norm under linear interpolation on a compact set in ${\mathbb R}^n$. Let $\Pi_1({\mathbb R}^n)$ be the space of polynomials in $n$ variables of degree at most $1$, $\Omega$ is a compactum in ${\mathbb R}^n$, $K={\mathrm conv}(\Omega)$. We will assume that ${\mathrm vol}(K)\geq 0$. Let the points $x^{(j)}\in \Omega$, $1\leq j\leq n+1,$ be the vertices of an $n$-dimensional nondegenerate simplex. The interpolation projector $P:C(\Omega)\to \Pi_1({\mathbb R}^n)$ with the nodes $x^{(j)}$ is defined by the equations $Pf\left(x^{(j)}\right)=f\left(x^{(j)}\right)$. By $\|P\|_\Omega$ we mean the norm of $P$ as an operator from $C(\Omega)$ to $C(\Omega)$. By $\theta_n(\Omega)$ we denote the minimal norm $\|P\|_\Omega$ of all operators $P$ with nodes belonging to $\Omega$. By ${\mathrm simp}(E)$ we denote the maximal volume of the simplex with vertices in $E$. We establish the inequalities $\chi_n^{-1}\left(\frac{{\mathrm vol}(K)}{{\mathrm simp}(\Omega)}\right)\leq \theta_n(\Omega)\leq n+1.$ Here $\chi_n$ is the standardized Legendre polynomial of degree $n$. The lower estimate is proved using the obtained characterization of Legendre polynomials through the volumes of convex polyhedra. More specifically, we show that for every $\gamma\ge 1$ the volume of the set $\left\{x=(x_1,\dots ,x_n)\in{\mathbb R}^n : \sum |x_j| +\left|1- \sum x_j\right|\le\gamma\right\}$ is equal to ${\chi_n(\gamma)}/{n!}$. In the case when $\Omega$ is an $n$-dimensional cube or an $n$-dimensional ball, the lower estimate gives the possibility to obtain the inequalities of the form $\theta_n(\Omega)\geqslant c\sqrt{n}$. Also we formulate some open questions.

Keywords: polynomial interpolation, projector, norm, esimate, Legendre polynomials.

UDC: 514.17+517.51+519.6

MSC: 41A05, 52B55, 52C07

Received: 13.08.2024
Revised: 26.08.2024
Accepted: 28.08.2024

DOI: 10.18255/1818-1015-2024-3-316-337



© Steklov Math. Inst. of RAS, 2026