RUS  ENG
Full version
JOURNALS // Modelirovanie i Analiz Informatsionnykh Sistem // Archive

Model. Anal. Inform. Sist., 2022 Volume 29, Number 2, Pages 92–103 (Mi mais769)

This article is cited in 1 paper

Discrete mathematics in relation to computer science

On some estimate for the norm of an interpolation projector

M. V. Nevskij

P. G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl 150003, Russia

Abstract: Let $Q_n=[0,1]^n$ be the unit cube in ${\mathbb R}^n$ and let $C(Q_n)$ be a space of continuous functions $f:Q_n\to{\mathbb R}$ with the norm $\|f\|_{C(Q_n)}:=\max_{x\in Q_n}|f(x)|.$ By $\Pi_1\left({\mathbb R}^n\right)$ denote a set of polynomials in $n$ variables of degree $\leq 1$, i. e., a set of linear functions on ${\mathbb R}^n$. The interpolation projector $P:C(Q_n)\to \Pi_1({\mathbb R}^n)$ with the nodes $x^{(j)}\in Q_n$ is defined by the equalities $Pf\left(x^{(j)}\right)= f\left(x^{(j)}\right)$, $j=1,$ $\ldots,$ $ n+1$. Let $\|P\|_{Q_n}$ be the norm of $P$ as an operator from $C(Q_n)$ to $C(Q_n)$. If $n+1$ is an Hadamard number, then there exists a non-degenerate regular simplex having the vertices at vertices of $Q_n$. We discuss some approaches to get inequalities of the form $||P||_{Q_n}\leq c\sqrt{n}$ for the norm of the corresponding projector $P$.

Keywords: Hadamard matrix, regular simplex, linear interpolation, projector, norm.

UDC: 514.17, 517.51, 519.6

MSC: 41A05, 52B55, 52C07

Received: 06.05.2022
Revised: 30.05.2022
Accepted: 01.06.2022

DOI: 10.18255/1818-1015-2022-2-92-103



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026