RUS  ENG
Full version
JOURNALS // Modelirovanie i Analiz Informatsionnykh Sistem // Archive

Model. Anal. Inform. Sist., 2021 Volume 28, Number 2, Pages 186–197 (Mi mais743)

This article is cited in 2 papers

Discrete mathematics in relation to computer science

On properties of a regular simplex inscribed into a ball

M. V. Nevskii

P. G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl 150003, Russia

Abstract: Let $B$ be a Euclidean ball in ${\mathbb R}^n$ and let $C(B)$ be a space of continuos functions $f:B\to{\mathbb R}$ with the uniform norm $\|f\|_{C(B)}:=\max_{x\in B}|f(x)|.$ By $\Pi_1\left({\mathbb R}^n\right)$ we mean a set of polynomials of degree $\leq 1$, i. e., a set of linear functions upon ${\mathbb R}^n$. The interpolation projector $P:C(B)\to \Pi_1({\mathbb R}^n)$ with the nodes $x^{(j)}\in B$ is defined by the equalities $Pf\left(x^{(j)}\right)=f\left(x^{(j)}\right)$, $j=1,\ldots, n+1$.The norm of $P$ as an operator from $C(B)$ to $C(B)$ can be calculated by the formula $\|P\|_B=\max_{x\in B}\sum |\lambda_j(x)|.$ Here $\lambda_j$ are the basic Lagrange polynomials corresponding to the $n$-dimensional nondegenerate simplex $S$ with the vertices $x^{(j)}$. Let $P^\prime$ be a projector having the nodes in the vertices of a regular simplex inscribed into the ball. We describe the points $y\in B$ with the property $\|P^\prime\|_B=\sum |\lambda_j(y)|$. Also we formulate some geometric conjecture which implies that $\|P^\prime\|_B$ is equal to the minimal norm of an interpolation projector with nodes in $B$. We prove that this conjecture holds true at least for $n=1,2,3,4$.

Keywords: simplex, ball, linear interpolation, projector, norm.

UDC: 514.17, 517.51, 519.6

Received: 28.04.2021
Revised: 25.05.2021
Accepted: 26.05.2021

DOI: 10.18255/1818-1015-2021-2-186-197



© Steklov Math. Inst. of RAS, 2026