RUS  ENG
Full version
JOURNALS // Modelirovanie i Analiz Informatsionnykh Sistem // Archive

Model. Anal. Inform. Sist., 2019 Volume 26, Number 2, Pages 267–278 (Mi mais678)

This article is cited in 2 papers

Theory of computing

Existence of an unbiased consistent entropy estimator for the special Bernoulli measure

E. A. Timofeev

P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150003, Russian Federation

Abstract: Let $\Omega = \mathcal{A}^{\mathbb{N}}$ be a space of right-sided infinite sequences drawn from a finite alphabet $\mathcal{A} = \{0,1\}$, $\mathbb{N} = \{1,2,\dots \} $,
$$ \rho(\boldsymbol{x},\boldsymbol{y}) = \sum_{k=1}^{\infty}|x_{k} - y_{k}|2^{-k} $$
— a metric on $\Omega = \mathcal{A}^{\mathbb{N}}$, and $\mu$ — a probability measure on $\Omega$. Let $\boldsymbol{\xi_0}, \boldsymbol{\xi_1}, \dots, \boldsymbol{\xi_n}$ be independent identically distributed points on $\Omega$. We study the estimator $\eta_n^{(k)}(\gamma)$ of the reciprocal of the entropy $1/h$ that are defined as
$$ \eta_n^{(k)}(\gamma) = k \left(r_{n}^{(k)}(\gamma) - r_{n}^{(k+1)}(\gamma)\right), $$
where
$$ r_n^{(k)}(\gamma) = \frac{1}{n+1}\sum_{j=0}^{n} \gamma\left(\min_{i:i \neq j} {^{(k)}} \rho(\boldsymbol{\xi_{i}}, \boldsymbol{\xi_{j}})\right), $$
$\min ^{(k)}\{X_1,\dots,X_N\}= X_k$, if $X_1\leq X_2\leq \dots\leq X_N$. Number $k$ and a function $\gamma(t)$ are auxiliary parameters. The main result of this paper is
Theorem. Let $\mu$ be the Bernoulli measure with probabilities $p_0,p_1>0$, $p_0+p_1=1$, $p_0=p_1^2$, then $\forall \varepsilon>0$ $\exists$ some continuous function $\gamma(t)$ such that
$$ \left|\mathsf{E}\eta_n^{(k)}(\gamma) - \frac1h\right| <\varepsilon,\quad \mathsf{Var}\,\eta_n^{(k)}(\gamma)\to 0,\ n\to\infty. $$


Keywords: measure, metric, entropy, estimator, unbias, self-similar, Bernoulli measure.

UDC: 519.2

Received: 06.05.2019
Revised: 22.05.2019
Accepted: 24.05.2019

DOI: 10.18255/1818-1015-267-278



© Steklov Math. Inst. of RAS, 2026