RUS  ENG
Full version
JOURNALS // Modelirovanie i Analiz Informatsionnykh Sistem // Archive

Model. Anal. Inform. Sist., 2016 Volume 23, Number 5, Pages 595–602 (Mi mais526)

Polylogarithms and the asymptotic formula for the moments of Lebesgue’s singular function

E. A. Timofeev

P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl 150003, Russia

Abstract: Recall the Lebesgue's singular function. We define a Lebesgue's singular function $L(t)$ as the unique continuous solution of the functional equation
$$ L(t) = qL(2t) +pL(2t-1), $$
where $p,q>0$, $q=1-p$, $p\ne q$. The moments of Lebesque' singular function are defined as
$$ M_n = \int_0^1t^n dL(t), \quad n = 0, 1, \dots $$
The main result of this paper is
$$ M_n = n^{\log_2 p} e^{-\tau(n)}\left(1 + \mathcal{O}(n^{-0.99})\right), $$
where
\begin{gather*} \tau(x) = \frac12\ln p + \Gamma'(1)\log_2 p +\frac1{\ln 2}\frac{\partial}{\partial z}\left.\mathrm{Li}_{z}\left(-\frac{q}{p}\right)\right|_{z=1} +\frac1{\ln 2}\sum_{k\ne0} \Gamma(z_k)\mathrm{Li}_{z_k+1}\left(-\frac{q}{p}\right) x^{-z_k},\\ z_k = \frac{2\pi ik}{\ln 2}, \ k\ne 0. \end{gather*}
The proof is based on analytic techniques such as the poissonization and the Mellin transform.

Keywords: moments, self-similar, Lebesgue’s function, singular, Mellin transform, polylogarithm, asymptotic.

UDC: 519.17

Received: 10.07.2016

DOI: 10.18255/1818-1015-2016-5-595-602


 English version:
Modeling and Analysis of Information Systems (MAIS), 2017, 51:7, 634–638

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026