RUS  ENG
Full version
JOURNALS // Modelirovanie i Analiz Informatsionnykh Sistem // Archive

Model. Anal. Inform. Sist., 2016 Volume 23, Number 1, Pages 5–11 (Mi mais479)

Asymptotic formula for the moments of Takagi function

E. A. Timofeev

P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia

Abstract: Takagi function is a simple example of a continuous but nowhere differentiable function. It is defined by
$$ T(x) = \sum_{k=0}^{\infty}2^{-n}\rho(2^nx), $$
where
$$ \rho(x) = \min_{k\in \mathbb{Z}}|x-k|. $$
The moments of Takagi function are defined as
$$ M_n = \int_0^1\,x^n T(x)\,dx. $$
The main result of this paper is the following:
$$ M_n = \frac{\ln n - \Gamma'(1)-\ln\pi}{n^2\ln 2}+\frac{1}{2n^2} +\frac{2}{n^2\ln 2} \phi(n) + \mathcal{O}(n^{-2.99}), $$
where
$$ \phi(x) = \sum_{k\ne 0} \Gamma\left(\frac{2\pi i k}{\ln 2}\right)\zeta\left(\frac{2\pi i k}{\ln 2}\right)x^{-\frac{2\pi i k}{\ln 2}}. $$


Keywords: moments, self-similar, Takagi function, singular, Mellin transform, asymptotic.

UDC: 519.17

Received: 20.12.2015

DOI: 10.18255/1818-1015-2016-1-5-11



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026