RUS  ENG
Full version
JOURNALS // Modelirovanie i Analiz Informatsionnykh Sistem // Archive

Model. Anal. Inform. Sist., 2011 Volume 18, Number 3, Pages 5–11 (Mi mais181)

This article is cited in 1 paper

On the Lassak conjecture for a convex body

M. V. Nevskii

P. G. Demidov Yaroslavl State University

Abstract: In 1993 M. Lassak formulated (in the equivalent form) the following conjecture. If we can inscribe a translate of the cube $[0,1]^n$ into a convex body $C\subset\mathbb R^n$, then $\sum_{i=1}^n 1/w_i\geq 1$. Here $w_i$ denotes the width of $C$ in the direction of the $i$th coordinate axis. The paper contains a new proof of this statement for $n=2$. Also we show that if a translate of $[0,1]^n$ can be inscribed into the $n$-dimensional simplex, then for this simplex holds $\sum_{i=1}^n 1/w_i= 1$.

Keywords: convex body, width, axial diameter, homothety, simplex, interpolation, projection.

UDC: 514.17+517.51

Received: 23.05.2011



© Steklov Math. Inst. of RAS, 2026