RUS  ENG
Full version
JOURNALS // Modelirovanie i Analiz Informatsionnykh Sistem // Archive

Model. Anal. Inform. Sist., 2007 Volume 14, Number 4, Pages 53–56 (Mi mais158)

This article is cited in 2 papers

On the lower estimate for $k+1$-nondecomposible permutations

G. R. Chelnokov

Yaroslavl State University

Abstract: A permutation $\tau$ is called $k+1$-nondecomposible if the following condition holds: if $\{a_1,\dots,a_in\}$ is a set of natural numbers such that $1\le a_1,<\dots,<a_i\le n$ and $\tau(a_1)<\tau(a_2)<\dots<\tau(a_i)$, then $i\le k$. By $f(n,k)$ denote the number of all not $k+1$-nondecomposible permutations. The following statement was proved in this paper: suppose $K(n)=o(\root3\of{n}/\ln n)$; then $f(n,k)=k^{2n-o(n)}$ for every $k \le K(n)$.

UDC: 512.552.4+519.115.1

Received: 29.09.2007



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026