RUS  ENG
Full version
JOURNALS // Modelirovanie i Analiz Informatsionnykh Sistem // Archive

Model. Anal. Inform. Sist., 2007 Volume 14, Number 3, Pages 8–28 (Mi mais143)

This article is cited in 1 paper

Orthogonal projection and minimal linear interpolation on a $n$-dimensional cube

M. V. Nevskij

Yaroslavl State University

Abstract: Let $H$ be the orthogonal projection onto polynomials of $n$ variables of degree $\le 1$ and $\|\cdot\|$ be the norm of an operator from $C([0,1]^n)$ to $C([0,1]^n)$. In this paper we show that $C_1\theta_n\le\|H\|\le C_2\theta_n$, $n\in\mathrm{N}$. Here $\theta_n$ denotes the minimal norm of a projection dealing with the linear interpolation on the cube $[0,1]^n$. The proofs make use of certain properties of the Eulerian numbers and the central $B$-splines and also some previous results of the author.

UDC: 517.51+514.17

Received: 03.09.2007



© Steklov Math. Inst. of RAS, 2026