RUS  ENG
Full version
JOURNALS // Trudy Geometricheskogo Seminara // Archive

Tr. Geom. Semin., 2003 Volume 24, Pages 129–138 (Mi kutgs36)

This article is cited in 1 paper

On holonomy representations of manifolds modelled on modules over Weil algebra

L. Â. Smolyakova

Kazan State University

Abstract: In [5], [6], for the canonical foliations of manifolds over local algebra $\mathbf A$ determined by ideals of $\mathbf A$, V. V. Shurygin defined and studied holonomy leaf representations. In the present paper we define holonomy representations for manifolds modelled on an $\mathbf A$-module $\mathbf L=\mathbf A^n\oplus\mathbf B^m$, where $\mathbf B$ is a quotient algebra of $\mathbf A$, and find interrelation of these representations with the holonomy representations defined in the foliation theory [3], [4] and in the theory of $(X,G)$-manifolds [1].



© Steklov Math. Inst. of RAS, 2026